6 research outputs found

    Energy-efficient Location-based Cooperative Routing in Wireless Networks

    No full text

    Fair and Efficient Spectrum Resource Allocation and Admission Control for Multi-user and Multi-relay Cellular Networks

    No full text
    This paper studies the joint relay selection and spectrum allocation problem for multi-user and multi-relay cellular networks, and per-user fairness and system efficiency are both emphasized. First, we propose a new data-frame structure for relaying resource allocation. Considering each relay can support multiple users, a K -person Nash bargaining game is formulated to distribute the relaying resource among the users in a fair and efficient manner. To solve the Nash bargaining solution (NBS) of the game, an iterative algorithm is developed based on the dual decomposition method. Then, in view of the selection cooperation (SC) rule could help users achieve cooperation diversity with minimum network overhead, the SC rule is applied for the user-relay association which restricts relaying for a user to only one relay. By using the Langrangian relaxation and the Karush-Kuhn-Tucker condition, we prove that the NBS result of the proposed game just complies with the SC rule. Finally, to guarantee the minimum rate requirements of the users, an admission control scheme is proposed and is integrated with the proposed game. By comparing with other resource allocation schemes, the theoretical analysis and the simulation results testify the effectiveness of the proposed game scheme for efficient and fair relaying resource allocation. © 2014 Springer Science+Business Media New York
    corecore